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ABSTRACT: A reported likelihood ratio for the value of evidence is very often a point estimate based on various types of reference data. When
presented in court, such frequentist likelihood ratio gets a higher scientific value if it is accompanied by an error bound. This becomes particularly
important when the magnitude of the likelihood ratio is modest and thus is giving less support for the forwarded proposition. Here, we investigate
methods for error bound estimation for the specific case of digital camera identification. The underlying probability distributions are continuous and
previously proposed models for those are used, but the derived methodology is otherwise general. Both asymptotic and resampling distributions are
applied in combination with different types of point estimators. The results show that resampling is preferable for assessment based on asymptotic
distributions. Further, assessment of parametric estimators is superior to evaluation of kernel estimators when background data are limited.
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Today, the scientific perspective of forensic interpretation of evi-
dence is based largely on statistical theory, particularly Bayesian
hypothesis testing. Aitken and Taroni (1) use the term likelihood
ratio, which in their context is equal to the Bayes factor (2). What
is often called the logical approach to evidence evaluation (3) stipu-
lates that the likelihood ratio is the only aspect of an interpretation
of a forensic analysis that should be reported. Although this ratio is
not an independent measure, it is part of a completely logical
framework, and in that context it represents the logical evidence.
However, it would be unlucky to denote this strategy ‘‘Bayesian,’’
because the forensic analyst should not apply the full Bayes’ theo-
rem to come to conclusions (3). The likelihood ratio can be
explained, understood, and interpreted without the inclusion of prior
odds, but it cannot be used as independent support for decisions
about conviction or acquittal.

A likelihood ratio is often connected with estimating probabilities
or expectations related to the findings of a forensic analysis, unless
such probabilities or expectations are already well known. There is
always a degree of uncertainty when probabilities must be estimated
from reference data (compiled databases or historical case records),
and thus an obtained likelihood ratio must almost always be treated
as a point estimate of the underlying true likelihood ratio. Assess-
ment of this estimate with respect to sampling variation is therefore
important and is particularly necessary if the magnitude of the
obtained estimate is small. Assessment of likelihood ratios for DNA
evidence in terms of uncertainty limits has previously been

investigated (4–6) including Bayesian credible intervals and highest
posterior density regions as well as frequentistic confidence intervals
obtained from asymptotic distribution or by bootstrapping. It might
be argued that for several cases of DNA identification, the evidence
value is so high that uncertainty limits become superfluous. As an
example, if the obtained likelihood ratio says that a match is 20 mil-
lion times more probable that the suspect was the donor of the stain
than that he was not, and the lower bound of that number is 18 mil-
lion, it would most probably not affect the conclusions in court.
However, as pointed out (6), a calculated likelihood ratio with an
error bound included gives a more trustworthy impression. More-
over, in cases in which the reported likelihood ratio is very close to
one, it would be of no practical use to provide the value with a mea-
sure of uncertainty, because we would already have reached the point
where the findings are inconclusive. Reported error bounds would
however strengthen the scientific value of the expert testimony.

Nevertheless, forensic casework includes the reporting of likeli-
hood ratios in the whole range from zero to infinity, and scrutiniza-
tion of those quantities may sometimes lead to unpleasant
surprises, for instance when it cannot be stated that there is high
probability that the true counterpart of a reported likelihood ratio of
1000 is actually above 100. The results of evidence evaluation can-
not be more certain for information derived from an entire logical
framework than for that acquired from each of its components.
When the evidence value is a ratio of conditional probabilities
(usually denotedP E HPjð Þ=P E HDjð Þ), its interpretation is that of a
Bayes factor and becomes straightforward in cases where the prob-
abilities can be estimated from relative frequencies obtained from
existing databases (typical for DNA evidence, but also for a num-
ber of other types of evidence such as shoe prints and glass frag-
ments). When such databases are very large, the discrepancies
between the true probabilities and the relative frequencies are negli-
gible and calculated posterior odds can be considered to be the true
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ones. For other types of evidence, and in particular the one that is
studied here, the value of evidence is more complicated and pro-
posed likelihood ratios will not be equal to true Bayes factors.
Additional models that can be estimated from available reference
data are needed, and the resulting likelihood ratios can be consid-
ered as parameters in the frequentistic sense. The estimated likeli-
hood ratios can be used as approximate Bayes factors in Bayesian
hypothesis testing, but the uncertainty induced by the estimation
must be considered. Confidence intervals for likelihood ratios in
heroin seizures have been proposed (7) by the use of bootstrapping
including bias correction. If the likelihood ratio can be expressed in
terms of parameters of the sampling distributions, like for height
measurements (8), sampling distributions of estimators of those
parameters can be used to construct confidence intervals for the
likelihood ratio.

Common to the works of Curran et al. (5,6) is the use of contin-
uous distributions in the numerator and denominator of the likeli-
hood ratio, and this paper describes another study within this area.
The intention is not to present a general framework, but rather to
obtain possible approaches for a certain type of application, i.e.,
digital camera identification. Use of the derived methodology is
however not restricted to this application, which we have chosen
simply to facilitate understanding of the present results. It should
also be mentioned that we use only continuous univariate data in
our approaches, to agree with the application of interest. In the fol-
lowing section, we describe the background of digital camera iden-
tification and derive likelihood ratios. Thereafter, we develop the
methodology needed for assessment and subsequently present a
small simulation study to validate the devised techniques.

Camera Identification and Likelihood Ratios

One of the key issues in the forensic analysis of an image con-
cerns the source of that particular graphic material. For a digital
image, the most important thing is to determine whether it came
from a certain camera, and that issue can be rephrased into two
competing hypotheses:

HP : The image was taken with the camera in question.

HD : The image was taken with a different camera than

the one in question: ð1Þ

It can be noted that it is essential to know how hypothesis HD is
specified. In a standard manner, it might be expressed as the comple-
ment of HP, in other words, it could simply be stated that the camera
in question did not capture the image. However, that would compli-
cate the situation, because it would mean that the alternative explana-
tion for the source of the image could even include devices other
than cameras (e.g., some means of artificial image production). To
comply with routine intelligence procedures, here we restrict the
second hypothesis to the involvement of a camera (or cameras) other
than the one that is specified as source of the image of interest in
hypothesis HP, and we leave cases involving sources other than
cameras to future work. It should also be said that in many cases,
hypothesis HD comprises one or more specific cameras (that are
available for analysis), while in other cases HD would comprise a
randomly selected camera, but different from the questioned one.

Measuring the Distance Between an Image and a Camera

Once we have established the hypotheses that should be com-
pared when evaluating the evidence, the next step is to decide what

kind of measurements should be used to calculate (estimate) the
likelihoods of the hypotheses. Following suggestions made by other
investigators (9,10), we choose what is known as pixel nonunifor-
mity (PNU) noise for that purpose. Generally, the noise can be
extracted as the rest or residual after application of a noise filter. If
YP is the pixel brightness (two-dimensional array) of an image, and
G is the noise filter operator, the noise residual is

DP ¼ YP � G YPð Þ ð2Þ

We prefer to use the term array instead of matrix as it will be
used as a vector in the calculations below, but still appear as a
two-dimensional entity. For the most part, PNU is considered to be
the only type of pixel ⁄camera-specific noise (9), and thus we can
reduce the other noise components by averaging over images taken
with the same camera. The reference pattern for a specific camera
is estimated by shooting a satisfactorily large number (N) of images
and then calculating

R ¼ N�1
XN

i¼1

DPi ð3Þ

where DPi is the noise residual obtained from shot image i. Note
that R is a two-dimensional array of the same size as Y. Now, it is
possible to judge whether an image in question (Q) was taken with
a particular camera (C) by comparing the noise residual of that
image (DQ) with a reference pattern (RC) obtained from that cam-
era. In particular, we measure the ‘‘distance’’ between the image
and the camera by determining the Pearson correlation coefficient
between DQ and RC as follows:

r DQ;RCð Þ ¼
DQ � DQ

� �
� RC � RC

� �
DQ � DQ

�� �� � RC � RC

�� �� ð4Þ

where DQ and RC are averages over the whole array, ‘‘s’’ is the
inner product, and �k k represents the Euclidean norm.1 It could be
expected that this correlation coefficient would generally be low,
because PNU noise does not dominate the noise residual. However,
the higher that value, the more it seems that the image in question
was indeed taken using camera C. Frequently hereafter, we refer to
this measure as ‘‘correlation’’ or ‘‘correlation coefficient’’ to avoid
the cumbersome expressions including ‘‘noise residual’’ and ‘‘refer-
ence pattern.’’ Let us consider a case involving two cameras, either
of which could have produced an image in question. If we use
Q ‹ C to represent the event of the image Q being taken by cam-
era C, then the pair of ‘‘competing’’ hypotheses can be written

HP : Q C

HD : Q C
ð5Þ

and C in this case denotes the alternative camera. If we shoot a
satisfactory number of images with each camera, we can obtain
empirical probability distributions of the correlation coefficient
(4) for each of the two cameras involved. Note that such sets of
images are taken independently of the set used to estimate the
reference pattern RC. The current state-of-the art strategy is to
compare those two distributions with the correlation coefficient
obtained for the image of interest. This is illustrated in Fig. 1,

1Equation (2.4) writes the correlation coefficient on condensed form.
Letting d1, …, dm denote the individual values of DQ and R1, …, Rm, the
individual values of RC the correlation coefficient can be written using stan-

dard notation as
Pm

1 di � d
� �

� Ri � R
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

1 di � d
� �2 �

Pm
1 Ri � R
� �2

q
:
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in which the two arrows indicate the positions of a calculated
correlation coefficient that are necessary to conclude strong sup-
port for each of the hypotheses HP and HD. It can be seen that,
in the area between the arrows, the conclusion about support is
weaker, but the camera whose empirical distribution is ‘‘clos-
est’’ to the observed correlation coefficient is the one that can
be concluded to be the source of the image Q.

It is apparent that the empirical probability distributions shown in
Fig. 1 are very different in shape. However, in general, dispersions
of the distributions of correlation coefficients will be larger for
images captured with the camera for which the reference pattern has
been calculated than for images from other cameras. The reason for
this is that other cameras will usually produce much lower correla-
tion coefficients, but the dispersion will diminish with the level.

Likelihood Ratios Based on Correlation Coefficients

An image used as a piece of evidence is often referred to as
recovered data, and a likelihood ratio should be used in the forensic
evaluation of such data. Bayes’ theorem in odds form for hypothe-
sis testing using continuous measurements is:

Pr HP x; Ijð Þ
Pr HD x; Ijð Þ ¼

f x HPj ; Ið Þ
f x HD;I
��� � � Pr HP Ijð Þ

Pr HD Ijð Þ ð6Þ

As before, HP and HD represent, respectively, the hypothesis that
the image was taken with a particular camera and the hypothesis
that it was taken with some other camera; and x denotes the contin-
uous measurements (recovered data) made on the (piece of)
evidence, which in our case will be the correlation coefficient
obtained. The term I represents the background information that is
relevant for all components involved. The ratio

f x HPj ; Ið Þ
f x HD; Ijð Þ ¼ V ð7Þ

is referred to in the forensic literature as the likelihood ratio that
stands for the evidence value, where f � HPj ; Ið Þ and f � HD; Ijð Þ

are the probability density functions valid under the respective
hypothesis (1). The generic symbol f is used for both functions,
but the density of the numerator can be very different from the
density in the denominator depending on how each hypothesis
and the background information relate to the recovered data x.
We will hereafter omit the background information (I) from the
formulas to simplify the expressions. With true densities (imply-
ing that the sampling models for the evidence under the respec-
tive hypotheses are known), the ratio in (7), the frequentist
likelihood ratio is equal to the Bayes factor. This is easy to see
because the Bayes factor is defined as the ratio of the posterior
odds to the prior odds of the hypotheses. In the following, we
shall however use an approximate Bayes factor as we will use
estimates of the probability densities. When referring to likeli-
hood ratios below, it shall therefore be understood that we are
using frequentist likelihood ratios and not true Bayes factors.

We now turn to establishing a likelihood ratio from the correla-
tion coefficient (4) obtained for an image of interest. Figure 1
shows empirical probability distributions of correlation coefficients
obtained from sets of images taken with each of two ‘‘competing’’
cameras. Indeed, the comparison of these two distributions with the
correlation coefficient r(DQ, RC) for the image in question is a like-
lihood ratio evaluation, although not numerically specified. To
achieve such specification, we need estimates of the probability
densities governing the empirical data.

As before, we let C stand for the camera that is supposed to be
the source of an image Q, RC is the reference pattern obtained for
C, and C denotes all other cameras that are potential sources of Q.
This is an extension of the procedure described in the previous sec-
tion, which assumed only one alternative camera. Now, indepen-
dent of the RC, a set of nC images are captured with camera C,
and the correlations of each image’s noise residual with RC are
obtained (i.e., a collection of correlations):

r DC;j;RC

� �� 	nC

j¼1 ð8Þ

The set C can be written {B1,…, Bm}, where each Bi represents
a camera other than C. A set of images is produced with each of
those cameras, and the correlations between each image’s noise
residual with RC are obtained. This gives m sets of correlations:

r DB1;j;RC

� �� 	nB1
j¼1; . . . ; r DBm;j;RC

� �� 	nBm

j¼1 ð9Þ

(nB1 ; . . . ; nBm are the number of images shot with cameras B1,
…, Bm, respectively). Let WC be the population of correlations
for images taken with camera C and WC the population of corre-
lations for images obtained with the alternative cameras. Each
population is thus built on the set of infinite number of images
that can theoretically be taken with that camera (those cameras).
Then, (8) constitutes a random sample from WC, and (9) a ran-
dom sample from WC. Further, let fC and fC be the probability
density functions for populations WC and WC, respectively. The
former density can be assumed to be unimodal, while the latter is
either unimodal (when m = 1) or multimodal (when m > 1).
When the recovered data x constitute the correlation coefficient
(4) for the image Q, then the true likelihood ratio for the pair of
hypotheses (2.1) becomes

V ¼ fC r DQ;RCð Þð Þ
fC r DQ;RCð Þð Þ ð10Þ

For the sake of brevity, hereafter we write r0 for r(DQ, RC),
rC,j for r(DC,j, RC), and rBi ;j for r DBi;j;RC

� �
. We need to

FIG. 1—Empirical probability distributions for a camera of interest (C;
right histogram) and an alternative camera (C; left histogram). The arrows
show the positions of a calculated correlation coefficient (2.4) that can pro-
vide strong support for the conclusion that either of the respective cameras
is the source of an image in question (Q).
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estimate the densities fC and fC from the empirical data (8)
and (9), or, more specifically, we need to use these data to
estimate the numerator and denominator of (10). There are
two main ways to accomplish that task: parametric and nonpara-
metric estimation. The former requires functional forms of fC
and fC, whereas the latter can be used with kernel estimation
(11,12).

Parametric Density Estimation

The generalized Gaussian distribution function has been sug-
gested (13) as a suitable model of correlations obtained from a sin-
gle camera. The density (GGD) has the form

f x l; r; bjð Þ

¼ b
2r � C 1=bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 3=bð Þ
C 1=bð Þ

s
exp � 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 3=bð Þ
C 1=bð Þ

s
� x� lj j

 !b
8<
:

9=
;
ð11Þ

where l and r are the population mean and standard deviation,
respectively, b is a shape parameter, and C is the gamma function.
With b = 2, (2.11) becomes an ordinary Gaussian density. Assum-
ing this functional form of fC, we can estimate it by replacing the
parameters l, r, and b with point estimates obtained from the
empirical data (2.8). More precisely, we set

fC xð Þ ¼ f x l0; r0; b0jð Þ ð12Þ

where l0, r0, and b0 are the mean, standard deviation, and
shape of WC, respectively. For fC, we use a mix of GGD
functions:

fC xð Þ ¼
Xm

i¼1

wi � f x li; ri; bijð Þ ð13Þ

where li, ri, and bi are the mean, standard deviation, and shape
of the subpopulation of WC defined by the correlations of images
taken with camera Bi, i = 1, …, m. The weights w1, …, wm are
chosen to be the relative sizes of the sets (9), i.e.,
wi ¼ nBi=

Pm
j¼1 nBj .

The parameters l0, l1, …, lm; r0, r1, …, rm; b0, b1, …, bm can
be, respectively, estimated by the maximum-likelihood (ML)
method or by the method of moments (MM). However, the former
technique can be problematic, because an ML estimate of b may
not exist, or there may be convergence difficulties associated with
numerical determination of that estimate. Conditions for the exis-
tence of such an estimate and algorithms for investigating its exis-
tence and computation have previously been proposed (11).
Application of those conditions to the present case is described in
Appendix 1. We do not recommend the use of ML estimation
when computing likelihood ratios as part of daily casework at a
forensic laboratory. By comparison, although MM estimation is not
free of problems, that method is easier to handle. In short, it is not
difficult to estimate l, and that estimate can be used to transform
the data so that they satisfy the case l = 0, in which there are
conditions that allow the other estimates to exist. Empirical studies
(13) have shown that MM estimates of r and b can be found, if
the sample size is fairly large (above 16) and the population value
of b is below 4. Explicit formulas for the MM estimates are given
in Appendix 1. We can now estimate the true likelihood ratio (10)
by

V̂ ¼
f r0jl̂0; r̂0; b̂0


 �
Pm

i¼1 wi � f r0jl̂i; r̂i; b̂i


 � ð14Þ

where the point estimates l̂0; r̂0; b̂0 and l̂i; r̂i; b̂i, i = 1, …, m
are either ML or MM estimates.

Nonparametric Kernel Density Estimation

A kernel is a symmetric non-negative function K(y) satisfyingR1
�1 KðyÞdy ¼ 1. From a probabilistic point of view, a kernel can be

thought of as a probability density function for a continuous random
variable with mean and median equal to zero. Very often, the stan-
dard normal density function uðyÞ ¼ ð2pÞ�1=2 expð�y2

�
2Þ is used

as what is referred to as a Gaussian kernel. A kernel estimate of a
probability density function f evaluated at x0 and based on a random
sample (x1, …, xn) from a population with this probability density is

f̂h x0ð Þ ¼
1

n � h
Xn

j¼1

K
x0 � xj

h


 �
ð15Þ

where h is what is known as bandwidth for the estimation. The
choice of K is usually not very important for the properties of
this estimate, whereas the choice of bandwidth is crucial. There-
fore, we use a Gaussian kernel for all sets of correlations, but
allow for different bandwidths. A kernel density estimate of fC
(r0) is now suggested as

f̂C;hC r0ð Þ ¼ n�1
C h�1

C

XnC

j¼1
u h�1

C � r0 � rC;j

� �� �
ð16Þ

and a kernel density estimate of fC r0ð Þ is proposed as

f̂C;h
C

r0ð Þ ¼ n�1
C

h�1
C

Xm

i¼1

XnBi

j¼1
u h�1

C
� r0 � rBi;j

� �
 �
ð17Þ

Note the difference between (13) and (17). In the latter, we do
not weigh individual density estimates, because this is taken care
of ‘‘automatically’’ by the kernel technique. Potential multimodali-
ties in fC will also occur in f̂C;h

C
, provided that the bandwidth hC

is properly chosen. The estimates (16) and (17) are combined to
give the kernel likelihood ratio estimate

V̂hC ;hC
¼

n�1
C h�1

C

PnC
j¼1 u h�1

C � r0 � rC;j

� �� �
n�1

C
h�1

C

Pm
i¼1

PnBi
j¼1 u h�1

C
� r0 � rBi ;j

� �
 � ð18Þ

As previously mentioned, the bandwidth h is essential for obtain-
ing a good kernel density estimate. According to other investigators
(14), the bandwidth that minimizes the mean square error of the
estimate of f•(r0) (fC orfC) using a Gaussian kernel is

hl r0ð Þ ¼
f� r0ð Þ

n � 2p � f 00� r0ð Þ
� �2

 !1=5

ð19Þ

where we have used the notation hl to indicate that this is a
locally optimized bandwidth. A global optimal bandwidth
can be derived by integration over the space of r-values in
(19).

In our analysis, the density function and its second derivative are
approximated by fitting generalized Gaussian densities, but in other
applications that may instead be achieved by ordinary Gaussian
density fitting. It is possible that this step is not crucial for the suc-
cess of the estimation, but that is not being investigated here. We
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point out that there are several ways of choosing the bandwidth that
are more or less data driven, although it seems that (19) and its
global counterpart appear most frequently in the literature and free
sites and software.

Example 1—A system camera C is used as the imaging device
in question, and a reference pattern RC is calculated from 50
images taken with that camera. Comparison is made with two other
system cameras of the same kind, which are designated B1 and B2.
With camera C, nC = 204 images are captured to form a set of cor-
relations (cf. [8]) for density estimation. For the same purpose,
nB1 ¼ 109 and nB2 ¼ 201 images are shot using cameras B1 and
B2, respectively (cf. [9]). Figure 2 shows the estimated density
functions (denoted fC and f B1;B2ð Þ in the graphs) obtained using
parametric GGD estimation and kernel density estimation with
locally optimized bandwidths, in both together with plotted log-
likelihood ratios (ln V̂) for different values of r0. It is obvious from
Fig. 2 that the parametric estimation in this case is superior to the
kernel density estimation, in the sense that likelihood ratios increase
monotonically with increasing r0. This can be explained by the
fairly small sample sizes used for the density estimation. In regions
where sample values are sparse, the precisions of the kernel density
estimates are low.

It should also be kept in mind that the estimated likelihood ratio
V̂ will increase dramatically with r0 in the case of parametric esti-
mation. This is not shown in Fig. 2, but can be easily understood.

Assessment Methodology

Let us now consider inferential assessment of the likelihood ratio
estimates (14) and (18).

Such a procedure usually involves evaluation of bias and vari-
ance, performing the latter either to establish error bounds or to test
hypotheses. From a jurisdictional perspective, it is of particular
interest to provide lower error bounds for the estimated likelihood
ratios (to give the benefit of the doubt). There are both frequentistic
and Bayesian approaches to do this (5,6), where the former is about
confidence intervals and the latter is about credible intervals or
highest posterior density regions. In a full Bayesian approach, the
true likelihood ratio (the Bayes factor) is considered as a function
of the parameters, each with a prior distribution and the prior den-
sity for that function needs to be derived and integrated with the
sampling distribution of the estimated likelihood ratio to obtain the
posterior density. The integration part would be carried out with
application of a Markov chain Monte Carlo method, but the deriva-
tion of the prior and the sampling distributions is more complex.
Frequentistic confidence intervals can be obtained either analyti-
cally by use of exact sampling distributions (if possible) or asymp-
totic sampling distributions, or by application of resampling
techniques.

In this work, we propose and evaluate two frequentistic
approaches: use of asymptotic sampling distributions and resam-
pling (bootstrap). The former strategy is more straightforward but
requires sufficiently large sample sizes, whereas the latter is more
flexible with regard to sample size but needs efficient computer
programming.

Three important things about the assessment of the likelihood
ratio estimates should be mentioned before we proceed to the dif-
ferent approaches. The first of these is that the evaluation here is
carried out with respect to the uncertainty induced by the samples
of correlations used to estimate the density functions. The correla-
tion coefficient of the image of interest is treated as a fact and not
as a random observation. Accordingly, the procedure might be
regarded as something between Bayesian and frequentistic, where
the former governs the hypothesis testing, and the latter is a tool
for likelihood estimation. There is no conflict in this, but merely a
simplification compared with an otherwise very complex full
Bayesian approach.

The second important aspect of the present assessment is that
inferential properties are derived for the natural logarithm of the
estimated likelihood ratio, i.e., ln V̂ , hereafter referred to as the
log-likelihood ratio. The reason for this is partly that calculations
are simpler, but also that the results will be more consistent with
the mathematical conditions of the likelihood ratio. A confidence
interval for V obtained from direct estimation may cover negative
values that are outside the range of V. A confidence interval for
ln V transformed to the original scale covers only positive values,
but can, of course, still be less informative if the lower limit is
far below 1. A drawback of such confidence intervals is that they
will always be right-skewed when transformed to original scale.
However, as the upper limit is seldom of interest when examin-
ing forensic evidence, this is of minor importance for the conclu-
sions in a real case. In the following sections, we derive
formulas for the likelihood ratio in original scale, but, for the
sake of clarity, the examples given illustrate the log-likelihood
ratio.

a

b

FIG. 2—Log-likelihood ratios versus correlation (r0) of an image of inter-
est (solid lines), with parametric GGD estimation (a) and kernel density
estimation (b) applied to correlations of images obtained with one particu-
lar camera (dashed dotted lines) and with two alternative cameras (dashed
lines).
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The third aspect of interest is that we restrict our assessment to
cases involving only one alternative camera; in other words, the
task is to determine which of the two cameras was used to produce
a particular image. This restriction does not result in loss of the
generality of the assessment methodology, but it does make the
mathematical calculation more transparent, and it also facilitates
the validation of the methodology discussed in a later section. This
validation is not intended to be adequate, but merely to serve as
verification that the assessment can work in practice.

Assessment Using Asymptotic Sampling Distributions

When considering only one alternative camera, the natural loga-
rithm of the likelihood ratio (14) becomes

v̂ ¼ ln f ðr0 jl̂0; r̂0; b̂0Þ � ln f ðr0 jl̂1; r̂1; b̂1Þ ð20Þ

To avoid the inclusion of too many parameter symbols in the
expressions below, we set H ¼ l0; r0; b0; l1; r1; b1ð Þ, i.e., the
vector of all parameters and Ĥ ¼ ðl̂0; r̂0; b̂0; l̂1; r̂1; b̂1Þ, the vector
of parameter estimates, and write

v ¼ ln f r0 l0; r0; b0jð Þ � ln f r0 l1; r1; b1jð Þ ¼ v Hð Þ ð21Þ

v̂ ¼ vðĤÞ ð22Þ

assuming Ĥ is either a maximum-likelihood estimate ĤML or
a method-of-moments estimate ĤMM . Some of the results
presented below are not related to the method of estimation,
and thus we mostly use the generic notation Ĥ, except when
discussing the choice of estimation method. Bias-adjusted esti-
mates of v and V can be obtained as

v̂b ¼ v̂� trðHvðĤÞ � JðĤÞÞ
.

2 ð23Þ

V̂b ¼ V̂
.

expðtrðHvðĤÞ � JðĤÞÞ
.

2Þ ð24Þ

where HvðĤÞ stands for the Hessian of the log likelihood and
JðĤÞ for the observed Fisher information. Details about the der-
ivation can be found in Appendix 2. Lower 100 1� að Þ% confi-
dence limits vLO and VLO for v and V, respectively, can be
estimated as follows:

vLO¼ v̂�biasðv̂Þ

� za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rvðĤÞ �JðĤÞ �rvðĤÞTþ2 � trðHvðĤÞ �JðĤÞ �HvðĤÞ �JðĤÞÞ

q
ð25Þ

VLO ¼ exp vLOf g ð26Þ

where za = F)1(1 ) a), i.e., za is the 100(1 ) a)th percentile of
the standard Gaussian distribution. Again, details can be found
in Appendix 2.

Example 2—Using the sets of correlations obtained for images
taken with cameras C and B1 in Example 1, we estimate the densi-
ties fC and fC ¼ fB1 , and calculate v̂ from (20), v̂b from (23), and
vLO with a = 0.05 from (25) for a range of potential values of r0.
Densities and graphs of calculated statistics are shown in Fig. 3.
The bias is negligible in size, although it does increase with

increasing r0. However, the lower confidence limit is problematic,
because, with increasing r0, the lower limit for v should be >0, if it
is to provide statistical evidence that the likelihood ratio V is above
1 and hence supports the hypothesis that camera C is the source of
the image in question. Notably, the graph in Fig. 3 indicates the
opposite, and even if the confidence interval could be expected to
be wider when r0 deviates from the more data-dense parts on the
axis, it is not acceptable that the lower limit degenerates in this
way. The reason for this behavior lies in the sample sizes, which,
from an asymptotic standpoint, are quite modest. Notwithstanding,
in a real case we want to achieve satisfactory outcomes without
having to take too many images with the cameras of interest, and
therefore the use of asymptotic results cannot be recommend when
the sample sizes are in the order of magnitude seen in the current
example.

Bootstrap Assessment

The bootstrap method is now widely used and has had ramifica-
tions in several areas of statistics. In many cases, it is necessary to
modify the original idea (15), for example, to account for differ-
ences in distributional moments (such as means and variances)
between sampling points or correlations between obtained values.
Nevertheless, here we use the original idea, including both

a

b

FIG. 3—Results of an assessment using asymptotic distributions. Esti-
mates (solid line), bias-adjusted estimates (dotted line), and lower 95% con-
fidence limits (dashed line) for the log-likelihood ratios were calculated for
a range of potential values of r0 as evidence that one camera, but not
another, was the source of a particular image. ([b] shows the central parts
augmented.)
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parametric and nonparametric resampling, but we are especially
cautious when determining the variance of the statistics in the
assessment step. For a full description of the methodology, see
papers published by other investigators (16,17).

Parametric Resampling

Inferential assessment of parametric models is commonly carried
out in a ‘‘classical’’ way, either by direct derivation of small-sample
properties of the estimators or, as in a previous section, by asymp-
totic inference. Less information has been published about the pos-
sibility of using resampling methods. However, if we apply the
model (11), in which obtained correlation coefficients have a gener-
alized Gaussian distribution, and we have estimates f̂C and f̂C of
the density functions based on this model, we can resample from
the population defined by these density estimates. A resampling
inferential assessment would then entail estimation of the bias and
variance of V̂ as

bias� V̂
� �
¼ E V̂ fC ¼ f̂C; fC ¼ f̂C

��� �
� V̂ ð27Þ

var� V̂
� �
¼ Var V̂ fC ¼ f̂C; fC ¼ f̂C

��� �
ð28Þ

The estimates (27) and (28) are commonly referred to as bootstrap
estimates of bias and variance. The notation with an asterisk empha-
sizes that conclusions drawn within the empirical distributions
defined by f̂C and f̂C are transferred to the original population
according to the bootstrap principle (16). Although (27) and (28) are
theoretically correct, they are seldom easy to derive analytically, and
it is for that reason that Monte Carlo simulation is often used. How-
ever, we would like to point out that performing bootstrapping or re-
sampling does not necessarily imply simulation, which represents a
common misunderstanding that can interfere with the conclusions
that are drawn from a bootstrap procedure. Furthermore, (27) is not
generally used for estimating bias, although it is valid when the
parameter of interest in the original distribution (population) corre-
sponds to the point estimate in the empirical distribution. This can
be seen here, because our likelihood ratio estimate has the same
form as the true likelihood ratio. Nonetheless, there are cases when
the point estimate is not derived in that manner and, as a result, does
not correspond to the population parameter.

For Monte Carlo simulation, let F̂C and F̂C be the corresponding
cumulative distribution functions (i.e., F̂�ðrÞ ¼

R r
�1 f̂�ðyÞdy). Then,

a random observation from the empirical population of potential
correlations between an image of interest and camera C is

r� DC;RCð Þ ¼ F̂�1
C Uð Þ ð29Þ

where U is a random quantity uniformly distributed over the
interval (0,1) and F̂�1

C is the inverse of F̂C. Replacing F̂�1
C

with F̂�1
C

in (29) gives a random observation from the empiri-
cal population of potential correlations between the target
image and the (set of) alternative camera(s). As before, we
restrict our interest to the existence of only one alternative
camera. By repeated use of (29) and its counterpart for C, we
can produce samples of values that are usually of the same
sizes as the original samples. Such samples are commonly
referred to as pseudo-samples of the original population. We
define a sample set as comprising one sample using (29) and
one sample using its counterpart for C. From this set, we
obtain parameter estimates l̂�0; r̂

�
0; b̂
�
0; l̂
�
1; r̂
�
1, and b̂�1 (ML or

MM), and, analogous to (20), we can estimate the log-likeli-
hood ratio

v̂� ¼ ln f r0 l̂�0; r̂
�
0; b̂
�
0

���
 �
� ln f r0 l̂�1; r̂

�
1; b̂
�
1

���
 �
ð30Þ

Repeating this procedure (i.e., producing a sample set and calcu-
lating [3.7]), a suitable number of times will give an empirical dis-
tribution for v̂� as a random variable. From this empirical
distribution, it is possible to obtain estimates of bias and variance
of v̂ as an estimator of v. However, for many estimators, such mea-
sures can be improved by studentizing, provided that an estimate of
its standard error can be obtained from a sample. Applying this
procedure to (3.7), we obtain repeated versions of

Tv̂� ¼
v̂� � v̂

SE� v̂�ð Þ ð31Þ

where SE�ðv̂�Þ is the estimate of standard error from a sample
set. As a standard error estimator, we can use any statistic that
is computed in closed form and is monotonically related to the
standard deviation of v̂; it does not have to be an unbiased esti-
mator. We suggest the asymptotic standard deviation used in
(3.4a), i.e.,

sv̂¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rvðĤÞ �JðĤÞ �rvðĤÞTþ2 � trðHvðĤÞ �JðĤÞ �HvðĤÞ �JðĤÞÞ

q
ð32Þ

which is computable from any sample set. The point is that
(32) can be calculated both with the original samples and with
the resampled sets, and the properties obtained from the empiri-
cal distribution of v̂� can be transferred to v̂ using the same kind
of standard error estimate. By applying (32) evaluated at
Ĥ
� ¼ðl̂�0; r̂�0; b̂�0; l̂�1; r̂�1; b̂�1Þ as the denominator of (31), we obtain

the following bias-adjusted estimate and lower 100 1�að Þ%
confidence limit for v:

v̂�b ¼ v̂� sv̂ � B�1
XB

b¼1

T bð Þ
v̂� ð33Þ

v�LO ¼ v̂� sv̂ � F�1
T 1� að Þ ð34Þ

where B is the number of resampled sets, T ðbÞv̂� is the statistic
(31) of sample set b, and F�1

T is the inverse of the empirical
cumulative distribution function induced by the set of statistics
fT ð1Þv̂� ; . . . ; T ðBÞv̂� g:

Example 3—Using the same setup as in Example 2, Fig. 4
shows densities and graphs of calculated statistics based on
B = 200 resampled sets. Compared to the assessment with asymp-
totic distributions (Fig. 3), the estimated bias is still negligible, but
negative, and the lower confidence limit is much more stable,
although it decreases with increasing r0.

Nonparametric Resampling

Much of what has been discussed thus far with regard to para-
metric resampling can also be applied in nonparametric resampling.
The main difference between those two approaches lies in the
actual resampling of data. Instead of sampling from an estimated
generalized Gaussian distribution, we resample directly from the
original samples. Let FnC ;C and Fn

C
;C represent the empirical

cumulative distribution functions obtained from the sets of correla-
tions (8) and (9) (here assuming the latter came from only one
camera). The counterparts of (27) and (28) become

bias� V̂
� �
¼ E V̂ FC ¼ FnC ;C;FC ¼ FnC ;C

���
 �
� V̂ ð35Þ
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var� V̂
� �
¼ Var V̂ FC ¼ FnC ;C;FC ¼ Fn

C
;C

���
 �
ð36Þ

where FC and FC denote the true cumulative distribution func-
tions of the two sets of correlations. The resampling counterpart
of (29) is

r� DC;RCð Þ ¼ F�1
nC ;C

Uð Þ ð37Þ

with a corresponding expression for the resampling from Fn
C
;C .

In practice, this means that we draw correlations independently
of each other and with replacement from each of the two origi-
nal samples to form a sample set.

For parametric estimation of v (and V), we can use the formulas
(30) to (33, 34) given above without modifications. It might be
argued that a parametric model should be accompanied by paramet-
ric resampling. However, even though such resampling can succeed
if the point estimates of the parameters (l, r, and b) successfully
reflect the cumulative distribution function (or the probability den-
sity function), the empirical cumulative distribution function (also
an ML estimate) might still be a better alternative.

Example 4—Again, we choose the setup from Example 3, and,
as in Example 3.2, we use 200 resampled sample sets. Figure 5
presents graphs of statistics calculated with nonparametric and with
parametric resampling. The ranges of the axes are reduced com-
pared to what is shown in Fig. 4 to make it easier to see the differ-
ences between the methods. The subscripts ‘‘np’’ and ‘‘p’’ are used
to distinguish between statistics from the two resampling proce-
dures. The bias-adjusted estimates are quite similar, whereas the
lower confidence limits are somewhat higher for the nonparametric
resampling.

Kernel Density Estimation

In a parametric resampling setup, the use of kernel density esti-
mates would not seem consistent, because such estimation is per-
formed when knowledge is lacking about the background
population or there are difficulties associated with the estimation of
some parameters. In contrast, it is natural to use nonparametric re-
sampling in combination with kernel density estimation. However,
with that approach, there is no longer a parametric standard error
in closed form, and it is computationally expensive to calculate an

estimate by using either the kernel density estimation procedure or
double bootstrap (16,17). In this paper, we consistently use the esti-
mate (3.9) motivated by the discussion preceding that equation,
which emphasized that it is important that the estimate of standard
error is monotonically related to the true standard deviation of the
point estimate. We do not attempt to validate that that is actually
the case, but it seems that there are no arguments supporting the
opposite.

Example 5—Nonparametric resampling is used in the same
setup as in Example 3.3. As in the previous examples, Fig. 6 shows
graphs of calculated statistics, but in this case obtained by paramet-
ric and kernel density estimation, using a Gaussian kernel for the
latter. The bandwidth is locally optimized for the original samples
and retained in the resampled sets. For clarity, the kernel density-
based statistics in Fig. 6 are denoted hC and hB. The curves in the
graph may give a noisy impression, but all statistics for the kernel
density estimation are far below the statistics for the parametric
estimation. The estimated log-likelihood ratios, the bias-adjusted
estimates, and the curve of lower confidence limits nearly coincide
in the lower part of the graph. The illustrated results clearly demon-
strate that kernel density estimation does not work satisfactorily for
this data set.

Validation of the Methodology

The methods of assessment used in the previous section have
not been justified by any theoretical calculations, and it may be
argued that such an investigation is required to prove the reliability
of the techniques. However, there is no other way to theoretically
demonstrate reliability than to establish asymptotic validity. Further-
more, it cannot honestly be said that such results will actually pro-
vide any benefits, knowing that the methods in question will very
seldom be applied to samples that are of sizes that can be assumed
to exhibit asymptotic behavior. Nevertheless, we cannot accept a
method that might fail even if a fairly large sample size is used,
and hence we proceed here by performing two simulation studies
to validate the methodology.

The assessment methodology to be validated is restricted to the
comparison of two cameras. Our objective of the first simulation

FIG. 4—Results of a bootstrap assessment. Estimates (solid line), bias-
adjusted estimates (dotted line), and lower 95% confidence limits (dashed
line) for the log-likelihood ratios were calculated for a range of potential
values of r0 as evidence that one particular camera, but not another, was
the source of an image in question.

FIG. 5—Results of a bootstrap assessment using nonparametric and para-
metric resampling. Estimates (solid line), bias-adjusted estimates (dotted
lines), and lower 95% confidence limits (dashed lines) were calculated for
the log-likelihood ratios of a range of potential values of r0 as evidence that
one camera, but not another, was the source of a particular image. The
bold dotted and dashed lines indicate nonparametric resampling.
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study is to show how distances between the means of the popula-
tions of correlations for the two cameras affect the estimated log-
likelihood ratio, the bias of this estimate, and the lower confidence
limit for the true log-likelihood ratio. Data are simulated from gen-
eralized Gaussian distributions, where the mean of the distribution
for a particular camera is fixed and the other mean varies. To
account for differences in shape, a prior distribution is used for this
parameter. In the calculations, the standard deviation will vary with
the mean, but the coefficient of variation will be constant. There
are several ways of choosing the parameters, and it is clear that a
simulation study of this type cannot be fully adequate. However,
our aim is not to prove general validity, but to give indications of
how well the methods suggested earlier may work. Details about
the distributional setup are given in Table 1.

The sample sizes used are nC = 2000 and nC ¼ 2000, respec-
tively, because they lie between what could be expected to be used
in daily casework and what can be assumed to be sufficient for
approaching asymptotic properties. Moreover, it would not be
infeasible, albeit very tedious, to take 2000 images with each of
the cameras involved.

For each pair of samples (sample set), we apply five different
methods of assessment:

Method 1: Parametric estimation and assessment with asymptotic
distributions.

Method 2: Parametric estimation and assessment with parametric
resampling.

Method 3: Parametric estimation and assessment with nonpara-
metric resampling.

Method 4: Kernel density estimation with nonparametric resam-
pling, and bandwidth locally optimized for the original sample set
and retained in resampled sets.

Method 5: Kernel density estimation with nonparametric resam-
pling, and bandwidth locally optimized for each sample set (origi-
nal and resampled).

For each method and each combination of means, 300 original
sample sets are generated. Because the true likelihood is known for
each combination of means, we can compare each set of 300
assessments with the truth. In Fig. 7, the ranges and means of the
true likelihood ratio are plotted against the difference in distribution
means for all pairs of distributions used in the simulation. It might
seem strange that a single value is not used for each difference in
means, but the reason for this is that the shape varies randomly

a

b

FIG. 6—Results of a bootstrap assessment involving nonparametric
resampling using parametric and kernel density estimation. Estimates (solid
lines), bias-adjusted estimates (dotted lines), and lower 95% confidence
limits (dashed lines) were calculated for the log-likelihood ratios of a range
of potential values of r0 as evidence that one camera, but not another, was
the source of a particular image. The three lowest statistics curves all
represent kernel density estimation. (The figure to the right shows the
central parts augmented.)

TABLE 1—Distributional setup of the first simulation study.

Simulation Parameter

‘‘Camera’’

Questioned Alternative

Mean (l) 0.15 Varying*
Shape (b) � 2ÆBeta(5,5)� + 1 � 2ÆBeta(5,5)� + 1
Coefficient of variation (r ⁄ l) 0.5 0.5
r0 0.0869§

*The mean for the alternative camera is varied in five equidistant
descending steps, starting with the value for which the true likelihood ratio
V is equal to 1 when b is equal to 2, and stopping with the value for which
V is equal to 10,000 when b is equal to 2.

�The correlation in question (r0) is chosen as the 20th percentile of a
generalized Gaussian distribution with l = 0.15, b = 2, and r = 0.5,
l = 0.075 (i.e., a Gaussian distribution). This corresponds to the ‘‘mean’’
simulated density for the camera of interest.

§Beta(5,5) denotes a beta distribution with parameters 5 and 5. The linear
transformation sets the range from 1 to 3 with mean 2.

FIG. 7—Means, maxima, and minima of true likelihood ratios for all
pairs of distributions used in the simulation study.
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between the distributions. Notably, the range increases with the dif-
ference in means.

To show how the bias estimation works, we compare the biases
that can actually be observed (i.e., v̂� v) with the estimated biases.
Differences between the observed and the estimated bias are shown
in Fig. 8a as box plots for each of the methods and for each differ-
ence in the means. It is obvious that the estimation is satisfactory
when using methods 1, 2, and 3, whereas it collapses with methods
4 and 5. It should also be noted that the variation increases with
the difference in means but is still symmetric around zero for the
first three methods.

In a similar manner, we compare calculated 90% lower confi-
dence limits for the log-likelihood ratio (vLO) with the true log-
likelihood ratio (v), and in Fig. 8b this is shown as box plots for

each of the methods and each difference in the means. For meth-
ods 1, 2, and 3, the variation is small (although it increases with
the difference in means), and the box plots show that the confi-
dence limits are satisfactorily close to the true log-likelihood ratio.
However, for methods 4 and 5, intervals are wider, because the
boxes are more extensively separated from zero. Table 2 gives the
attained coverage levels for the one-sided 90% confidence intervals
defined by the lower limits for each method. Not surprisingly,

a

b

FIG. 8—Differences between observed bias and estimated bias (a) and between the true log-likelihood ratio and the lower 90% confidence limit (b) calcu-
lated using methods 1–5 for each difference in means in a pair of distributions.

TABLE 2—Attained coverage levels for one-sided 90% confidence intervals
obtained in the first simulation study.

Method 1 2 3 4 5
Coverage level (%) 92.3 90.1 90.5 95.1 95.7
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methods 4 and 5 give higher coverage levels than the designed
90% intervals, and it is also apparent that method 1 differs from
methods 2 and 3 in that the latter two techniques result in cover-
age levels that are substantially closer to the designed 90% inter-
vals. These observations agree with our finding that the assessment
with asymptotic distributions described earlier proved to be less
satisfactory than the parametric and nonparametric bootstrap. Fur-
thermore, it might be said that all the disappointing results
obtained using methods 4 and 5 were indeed expected, considering
the poor behavior of those techniques in the examples given in the
previous section.

In the second simulation study, we investigate the coverage lev-
els of the proposed confidence intervals with methods 1, 2, and 3
above. As before, we limit ourselves to two cameras. The popula-
tions of correlations obtained with the two cameras are modeled
with generalized Gaussian distributions with different means and
shapes and the value of r0 is set to 0.0869, which corresponds with
a true likelihood ratio of 4655 under the models used. The sample
sizes are nC = 2000 and nC ¼ 2000, respectively, and a total of
500 original sample sets are generated. The difference between the
two means equals the largest difference used in the first simulation
study. However, in this second simulation study, the shapes are
fixed, which means that we are studying two fixed cameras. In
Table 3 are given details of the distributions used and attained cov-
erage levels with standard errors for each of the three methods
investigated. Comparing with the results in Table 2, we note that
the attained coverage level with method 1 still exceeds the nominal
level and does so even within 95% error bounds
(0.926 € 2 · 0.012). The attained coverage level for method 2 does
not reach the nominal 90%, but the latter is within the 95% error
bounds (0.878 € 2 · 0.015). For method 3, the attained coverage
level is satisfactory.

Conclusions

In this paper, we have demonstrated how a number of differ-
ent methods can be employed to assess a likelihood ratio (or
actually the logarithm of a likelihood ratio) that is calculated
from density functions estimated from available data. Use of
these techniques specifically to assess digital images as forensic
evidence is in itself an interesting future application of likelihood
ratios, but the methodology also offers more general possibilities
for evaluating evidence in almost any area of forensics in which
continuous distributions govern the outcome of the findings. It is
important to emphasize that this type of assessment is carried
out in relation to the background data. In the application in
focus in our study, such data can be produced for each particu-
lar case, whereas in other applications background data can exist
in the form of compiled databases. An alternative approach
would be to work with the true Bayes factor and prior

distributions for the parameters of the numerator and denomina-
tor densities. The uncertainty of the Bayes factor would then lie
in the choice of prior densities, but this has not been investi-
gated in the current study.

Considering the examples and the validation study described in
this paper, it seems that resampling represents the most successful
approach, regardless of whether it is carried out in a parametric or
a nonparametric fashion. Furthermore, it appears that densities
should be estimated from parametric models. Also, assessment
using asymptotic distributions does have potential, but in general it
requires larger sample sizes. This means that, in cases when exten-
sive databases are available, it can be expected that this type of
assessment will be successful, provided we can obtain reasonable
parameterizations of the data. Of course, it can be suitable to
employ resampling in cases involving enormous amounts of back-
ground data, although that may be very time-consuming and
require extensive computer efforts.

Estimating density functions with kernel smoothers was not suc-
cessful in our examples. However, we have no reason to believe
that such methods will collapse if larger amounts of background
data are used. Even so, it is important to realize that we cannot
expect to obtain good results from either the calculation of a likeli-
hood ratio or the assessment of that ratio, if data from the forensic
findings are far out in the tails of any of the distributions involved.
Inasmuch as the kernel density estimates are too uncertain in such
cases, the results are not reliable.
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Appendix 1—Conditions for the existence of

method-of-moments estimators

MM estimates of r and b for a GGD with zero mean exist, pro-
vided that

n�1
X
jxjj2


 �2
�

n�1
X
jxjj


 �
<3=4;

where (x1, …, xn) is the random sample to be used for the esti-
mation (13). Translated to the setup of the present study (the
samples defined by [8] and [9]), we require

n�1
C

PnC
j¼1 r DC;j;RC

� ��� ��2
 �2

n�1
C

PnC
j¼1 r DC;j;RC

� ��� �� <
3
4

and

n�1
Bi

PnBi
j¼1 r DBi;j;RC

� ��� ��2
 �2

n�1
Bi

PnBi
j¼1 r DBi;j;RC

� ��� �� <
3
4

; i ¼ 1; . . . ;m

ðA1.1Þ

The conditions in (A1.1) are fairly easy to check by use of a
routine for finding the estimates. In addition, these conditions are
sufficient, but not necessary, for the MM estimates to exist.

The MM estimates of l, r, and b for any set of n correla-
tions r D�;j;RC

� �� 	n

j¼1 are found by solving this system of
equations:

l̂¼ n�1
Xn

j¼1

r D�;j;RC

� �
; G yð Þ ¼ C 2=yð Þ½ �2

C 3=yð Þ �C 1=yð Þ

M1 ¼ n�1
Xn

j¼1

r D�;j;RC

� �
� l̂

�� ��; b̂¼G�1 M2
1

�
M2

� �

M2 ¼ n�1
Xn

j¼1

r D�;j;RC

� �
� l̂

�� ��2; r̂¼M1 �
C 1

.
b̂


 �
C 2

.
b̂


 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 3

.
b̂


 �
C 1

.
b̂


 �
vuuut

ðA1.2Þ

Appendix 2—Mathematical derivation of bias-adjusted

estimates and confidence limits in assessment using asymptotic

distributions

Applying the second-order Taylor approximation2 of (3.2b), we
have

E vðĤÞ
n o

	 v Hð Þ þ trðHvðĤÞ � RÞ
.

2 ðA2.1aÞ

Var vðĤÞ
n o

	 rvðĤÞ � R � rvðĤÞT

þ / � trðHvðĤÞ � R � HvðĤÞ � RÞ þ w
ðA2.1bÞ

where rvðĤÞ and HvðĤÞ are, respectively, the gradient and Hes-
sian of v evaluated at Ĥ; R is the variance–covariance matrix of
Ĥ; / and w are factors depending on the third and fourth moments
of HvðĤÞand on the covariance between ðĤ�HÞ� rvðĤÞ and
ðĤ�HÞ � HvðĤÞ � ðĤ�HÞT. Choosing / and w is a complicated
task, which we simplify here by using / = 2 (an overestimate of
Gaussian-distributed Ĥ) and ignoring asymptotic covariance
through the use of w 	 0. The gradient and Hessian in (A2.1a)
and (A2.1b) can both be derived analytically, but we simplify the
calculation of the Hessian by employing numerical differentiation.
For the variance–covariance matrix R, we use the observed Fisher
information

J Ĥ

 �

¼ � @
2l Hð Þ
@H2

����
H¼Ĥ

 �
ðA2.2Þ

where l(Q) represents the log-likelihood function. It is valid to use
(A2.2) as the approximate asymptotic variance–covariance matrix
of a maximum-likelihood estimator ĤML, whereas the validity of
this approximation for the method-of-moments estimator ĤMM has
not been thoroughly investigated. Some empirical results show that
when a maximum-likelihood estimate can be obtained, it deviates
only slightly from the method-of-moments estimate. Thus, it is
plausible that if we obtain a methods-of-moments estimate, the
results below will hold for a likelihood ratio based on that
estimate.

From (A2.1a) and (A2.2), we obtain approximate estimates of
bias:

bias v̂f g ¼ trðHvðĤÞ � JðĤÞÞ=2 ðA2.3aÞ

relbias V̂
� �
¼ expðtrðHvðĤÞ � JðĤÞÞ=2Þ; ðA2.3bÞ

and we note that the estimated bias of V̂ is relative. Bias-
adjusted estimates of v and V are now obtained as

v̂b ¼ v̂� trðHvðĤÞ � JðĤÞÞ=2 ðA2.4aÞ

V̂b ¼ V̂=expðtrðHvðĤÞ � JðĤÞÞ=2Þ ðA2.4bÞ

For a maximum-likelihood estimate ĤML, we can make use of
well-known asymptotic distributional properties. By combining

2vðĤÞ 	 vðHÞ þ ðĤ�HÞ � rvðĤÞ þ ðĤ�HÞ � HvðĤÞ � ðĤ�HÞT=2
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(A2.3a) with (A2.1b) and (A2.2), the lower 100 1� að Þ%
confidence limits vLO and VLO for v and V, respectively, can be
estimated as follows:

VLO ¼ exp vLOf g ðA2.5bÞ

where za = F)1(1 ) a), i.e., za is the 100(1 ) a)th percentile of the
standard Gaussian distribution. We also use these limits for a

method-of-moments estimator ĤMM , taking into account that the
validity of this may be questionable, especially in the tails of the
true distributions of v̂ and V̂ .

vLO ¼ v̂� bias v̂ð Þ � za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rvðĤÞ � JðĤÞ � rvðĤÞT þ 2 � trðHvðĤÞ � JðĤÞ �HvðĤÞ � JðĤÞÞ

q
ðA2.5aÞ
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